Questo sito si serve dei cookie per fornire servizi. Utilizzando questo sito acconsenti all'utilizzo dei cookie - Maggiori Informazioni - Acconsento


Atik
Coelum Astronomia
L'ultimo numero uscito
Leggi Coelum
Ora è gratis!
AstroShop
Lo Shop di Astronomia
Photo-Coelum
Inserisci le tue foto
DVD Hawaiian Starlight
Segui in diretta lo sbarco di Philae sulla Cometa
Skypoint

Vai indietro   Coelestis - Il Forum Italiano di Astronomia > Il Mondo dell'Astronomo dilettante > Rudi Mathematici
Registrazione Regolamento FAQ Lista utenti Calendario Cerca Messaggi odierni Segna come letti

Rispondi
 
Strumenti della discussione Modalità  di visualizzazione
Vecchio 11-11-11, 12:13   #121
Erasmus
Utente Super
 
L'avatar di Erasmus
 
Data di registrazione: Feb 2008
Ubicazione: Unione Europea
Messaggi: 5,568
Predefinito Re: Estrazioni casuali

Quote:
astromauh Visualizza il messaggio
Non so se mi sono espresso male, ma io ho usato il metodo alla Mizarino, ossia il metodo Montecarlo. Per me, considerare tutti i casi possibili, oppure considerare un gran numero di essi, distribuito uniformemente sull'insieme della totalità dei casi, sono entrambi dei metodi basati sulla forza bruta.

Se mi dite che per metodo basato sulla forza bruta, si considera solo quello che tiene conto di TUTTI i casi possibili, in futuro farò più attenzione a ciò che dico.
No, non ti sei espresso male prima! Hai letto male il mio 'post' dopo!
Ho detto che è più facile programmare una formula – se c'è e se la si conosce, of course – che fare un programma direttamente numerico, o analizzando tutti i possibili esiti (processo esaustivo, possibile solo se in numero di esiti possibili è finito) per contare quelli "favorevoli" oppure analizzarne un gran numero presi "a caso" (distribuiti uniformemente sull'insieme di tutti i possibili se questi sono equiprobabili, processo alla Montecarlo).
Insomma:
La cosiddetta "forza bruta" consiste nel simulare l'evento ripetutamente in modo da applicare l'assioma della probabilità frequentistica: La distribuzione effettiva degli esiti nella ripetizione di eventi casuali uguali tende alla probabilità al tendere all'infinito del numero di eventi.
-----------------------
@ aspesi
Hai detto che la formula che alla fine ho trovato io è quella giusta.
Io l'ho trovata senza essere troppo sicuro che fosse quella giusta.
Alla fine sono andato più per induzione – a partire dall'esame dell'unione di tre insiemi non disgiunti – che per deduzione, perché mi son detto: facciamo qualcosa che sia il più possibile analogo a quel che succede a tre insiemi che si intersecano.
In questo senso (induzione!) mi è stato fondamentale, anzi indispensabile, il risultato ottenuto con la "forza bruta" da astromauh. Come nelle leggi della Fisica: osservato l'esito di qualche evento viene ipotizzata una legge che però sarà accettata per vera solo se verificata senza eccezioni da successive sperimentazioni, ossia (a) provocazioni di eventi analoghi per i quali la legge prevede l'esito e (b) constatazione che l'esito sperimentale effettivo è quello previsto dalla legge.
Tu invece hai dedotto la formula (= la legge) come conseguenza di formule già note (= leggi già assodate nel calcolo combinatorio nel quale sei impareggiabile, i. e. eximius , almeno qui nel nostro ambiente).
Per favore, vuoi spiegare meglio il processo deduttivo con cui si trova quella formula?
Ti dici che sono "formidabile" (che, etimologicamente, significa che sono "spaventoso").
Sarà anche vero che faccio paura, dal momento che ancora dove starebbe la semplicità della tua formula recursiva io non ho capito!.
Fatto sta che non l'ho capita!.
E non mandarmi a vedere le "sequenze" sull'apposito sito Internet: così non risolvo il mio problema di comprensione, ma dovrei dirti: «Sì, hai ragione!» fidandomi anch'io di un "ipse dixit".

Ciao ciao
----------------
P.S.
Non c'è bosogno che tu mi dica che lanciare un dado alla volta è lo stesso che lanciarli tutti insieme!
Quel che non è lo stesso è esaminare i lanci uno alla volta man mano che avvengono o esaminarli dopo che sono stati lanciati tutti.
Nel primo caso devi andare a probabilità condizionate, nel secondo caso ... te ne freghi dell'effettivo esito e vai a raccogliere tra tutti gli eventi possibili, come quando vai a funghi e distingui i buoni dai cattivi.
__________________
Erasmus
«NO a nuovi trattati intergovernativi!»
«SI' alla "Costituzione Europea" federale, democratica e trasparente!»

Ultima modifica di Erasmus : 11-11-11 12:57.
Erasmus non in linea   Rispondi citando
Vecchio 11-11-11, 13:59   #122
astromauh
Utente Super
 
L'avatar di astromauh
 
Data di registrazione: Sep 2007
Messaggi: 3,797
Predefinito Re: Estrazioni casuali

Comunque, sono sicuro che il mio programmino darebbe lo stesso risultato anche sul PC di Mizarino, che ha un generatore di numeri random molto efficiente.

Con questo non voglio dire che le formule di Aspesi siano errate, ma probabilmente c'è una approssimazione nei suoi calcoli, maggiore dell'imprecisione del metodo Montecarlo.

Mizarino, sei ci sei batti un colpo!

PS
Credo che potrei anche fare un programma per conteggiare in modo esaustivo, i due miliardi e rotti di combinazioni, solo che non ne ho tanta voglia.

__________________
www.Astrionline.it
Astromauh <a href=http://www.trekportal.it/coelestis/images/icons/icon10.gif target=_blank>http://www.trekportal.it/coelestis/i...ons/icon10.gif</a>
astromauh ora è in linea   Rispondi citando
Links Sponsorizzati
Astrel Instruments
Vecchio 11-11-11, 15:10   #123
aspesi
Utente Super
 
L'avatar di aspesi
 
Data di registrazione: Nov 2009
Ubicazione: Terra dei Walser
Messaggi: 4,380
Predefinito Re: Estrazioni casuali

Quote:
astromauh Visualizza il messaggio
Comunque, sono sicuro che il mio programmino darebbe lo stesso risultato anche sul PC di Mizarino, che ha un generatore di numeri random molto efficiente.

Credo che potrei anche fare un programma per conteggiare in modo esaustivo, i due miliardi e rotti di combinazioni, solo che non ne ho tanta voglia.

Allora, insisti

Le 2.176.782.336 combinazioni del lancio di 12 dadi si ripartiscono così:
1 numero = 6
2 numeri = 61.410
3 numeri = 10.838.120
4 numeri = 220.140.360
5 numeri = 993.168.000
6 numeri = 953.029.440
----------------------------
Totale = 2.176.782.336 = 6^12

aspesi non in linea   Rispondi citando
Vecchio 11-11-11, 15:43   #124
aspesi
Utente Super
 
L'avatar di aspesi
 
Data di registrazione: Nov 2009
Ubicazione: Terra dei Walser
Messaggi: 4,380
Predefinito Re: Estrazioni casuali

Quote:
Erasmus Visualizza il messaggio
Tu invece hai dedotto la formula (= la legge) come conseguenza di formule già note (= leggi già assodate nel calcolo combinatorio nel quale sei impareggiabile, i. e. eximius , almeno qui nel nostro ambiente).
Per favore, vuoi spiegare meglio il processo deduttivo con cui si trova quella formula?.
Erasmus, tu mi sopravvaluti... specie ora, che gli anni, anche per me, cominciano a mostrare i segni...

Tu le formule le ricavi, io normalmente non so farlo.
E quasi sempre mi limito a fare una ricerca con google.
Dopo aver calcolato qualche risultato parziale, facendo esempi con numeri piccoli abbordabili, che si possono trattare "a mano".
In questo caso, la formula io l'ho copiata dal sito dell'enciclopedia delle sequenze,
al quale mi rivolgo spesso:
http://oeis.org/A000920
come ho già detto.

Quote:
Erasmus Visualizza il messaggio
...ancora dove starebbe la semplicità della tua formula recursiva io non ho capito!.
Fatto sta che non l'ho capita!.
La tabella di cui al messaggio 115 è semplice!
Ogni valore indica la probabilità di avere n (1 - 2 - 3 - 4 - 5 - 6) facce distinte lanciando k (da 1 a 15) volte un dado (oppure k dadi una volta).

La prima colonna è banale.
Dopo 1 lancio, la probabilità di avere 1 faccia è 1.
Dopo 2 lanci è 1*1/6
Dopo 3 lanci è (1*1/6)*1/6
ecc....
e quindi per ottenere i valori basta fare:
p(1,k) = p(1,k-1) * 1/6

Gli altri valori si ottengono invece dalla somma di due contributi per tener conto della situazione di partenza precedente (al lancio k-1):
-la probabilità di mantenere lo stesso numero di numeri del lancio precedente (k-1), purché si ripeta uno dei numeri già usciti prima (con frazione n/6) + la probabilità di aumentare di un numero, qualora la situazione presente al lancio k-1 fosse di avere n-1 numeri e con il successivo lancio uscisse un numero non presente prima (frazione (6-(n+1))/6).

Esempio:
Qual è la probabilità di avere 4 numeri distinti sui 6 del dado con 8 lanci?
E' la somma della probabilità di avere 4 numeri dopo 7 lanci moltiplicata per 4/6 + quella di avere 3 numeri dopo 7 lanci moltiplicata per il numero di facce mancanti a 6 in quella situazione, cioè 3, diviso 6.
p(4,8) = p(4,7) * 4/6 + p(3,7) * 3/6

Lo stesso meccanismo (catene di Markov?) è utile in molti altri casi (ad esempio, se si vuole calcolare la probabilità di avere un numero x di teste consecutive con un numero y di lanci di una moneta)

aspesi non in linea   Rispondi citando
Vecchio 12-11-11, 11:01   #125
aspesi
Utente Super
 
L'avatar di aspesi
 
Data di registrazione: Nov 2009
Ubicazione: Terra dei Walser
Messaggi: 4,380
Predefinito Re: Estrazioni casuali

Oggi giochiamo con i dadi al 7-11

Le regole sono queste:
Si gioca con due dadi. Si punta 100.
Si tirano la prima volta, e si sommano i due numeri usciti.
Se la somma è 7 o 11, si vince 200.
Se escono 2, 3 o 12 si perde.
Nel caso la somma dei due dadi dia un punteggio differente, si continuano a tirare i due dadi finché:
-esce lo stesso punteggio somma del primo tiro e allora si vince 200
-esce la somma 7 e allora si perdono i 100 puntati all'inizio

Alla lunga, è più conveniente tirare i dadi o scommettere contro?

aspesi non in linea   Rispondi citando
Vecchio 13-11-11, 14:03   #126
astromauh
Utente Super
 
L'avatar di astromauh
 
Data di registrazione: Sep 2007
Messaggi: 3,797
Predefinito Re: Estrazioni casuali

Quote:
aspesi Visualizza il messaggio
Allora, insisti

Le 2.176.782.336 combinazioni del lancio di 12 dadi si ripartiscono così:
1 numero = 6
2 numeri = 61.410
3 numeri = 10.838.120
4 numeri = 220.140.360
5 numeri = 993.168.000
6 numeri = 953.029.440
----------------------------
Totale = 2.176.782.336 = 6^12

Si, ha ragione, ho calcolato TUTTE le combinazioni, ed ottengo esattamente i
numeri che riporti.

Non capisco però, perchè il generatore di numeri random funzioni cosi' male!

Accidenti a Bill Gates!
__________________
www.Astrionline.it
Astromauh <a href=http://www.trekportal.it/coelestis/images/icons/icon10.gif target=_blank>http://www.trekportal.it/coelestis/i...ons/icon10.gif</a>
astromauh ora è in linea   Rispondi citando
Links Sponsorizzati
Telescopi Artesky
Vecchio 13-11-11, 14:38   #127
astromauh
Utente Super
 
L'avatar di astromauh
 
Data di registrazione: Sep 2007
Messaggi: 3,797
Predefinito Re: Estrazioni casuali

Quote:
aspesi Visualizza il messaggio
Oggi giochiamo con i dadi al 7-11

Le regole sono queste:
Si gioca con due dadi. Si punta 100.
Si tirano la prima volta, e si sommano i due numeri usciti.
Se la somma è 7 o 11, si vince 200.
Se escono 2, 3 o 12 si perde.
Nel caso la somma dei due dadi dia un punteggio differente, si continuano a tirare i due dadi finché:
-esce lo stesso punteggio somma del primo tiro e allora si vince 200
-esce la somma 7 e allora si perdono i 100 puntati all'inizio

Alla lunga, è più conveniente tirare i dadi o scommettere contro?


Ma che gioco è?

Non si capisce nulla!
__________________
www.Astrionline.it
Astromauh <a href=http://www.trekportal.it/coelestis/images/icons/icon10.gif target=_blank>http://www.trekportal.it/coelestis/i...ons/icon10.gif</a>
astromauh ora è in linea   Rispondi citando
Vecchio 13-11-11, 14:42   #128
aspesi
Utente Super
 
L'avatar di aspesi
 
Data di registrazione: Nov 2009
Ubicazione: Terra dei Walser
Messaggi: 4,380
Predefinito Re: Estrazioni casuali

Quote:
astromauh Visualizza il messaggio
Si, ha ragione, ho calcolato TUTTE le combinazioni, ed ottengo esattamente i
numeri che riporti.


Quote:
Ma che gioco è?

Non si capisce nulla!
__________________
Mi pare chiarissimo.*
Il 7-11 con due dadi è anche un gioco piuttosto comune.
Chiedi quello che non capisci



*
Queste sono le elementari regole:
  • se il punteggio totalizzato dalle due facce dei dadi è 7 oppure 11 il tiratore vince la partita e si dice “Naturale”,
  • se la somma da come risultato 2, 3, oppure 12 il giocatore ha perso e l’evento è si dice “Craps”;
  • se si ottiene invece un 4, 5, 6, 8, 9 o 10 (al primo lancio) il tiratore accumula il punteggio ed ha diritto ad un ulteriore tiro che gli darà la vittoria se viene riconfermato nuovamente quel punteggio, in caso contrario (se ottiene un 7) perderà la partita.
http://www.casino2k.com/gioco-dadi

Ultima modifica di aspesi : 13-11-11 14:47.
aspesi non in linea   Rispondi citando
Vecchio 13-11-11, 14:59   #129
astromauh
Utente Super
 
L'avatar di astromauh
 
Data di registrazione: Sep 2007
Messaggi: 3,797
Predefinito Re: Estrazioni casuali

Quote:
aspesi Visualizza il messaggio




Mi pare chiarissimo.*
Il 7-11 con due dadi è anche un gioco piuttosto comune.
Chiedi quello che non capisci



*
Queste sono le elementari regole:
  • se il punteggio totalizzato dalle due facce dei dadi è 7 oppure 11 il tiratore vince la partita e si dice “Naturale”,
  • se la somma da come risultato 2, 3, oppure 12 il giocatore ha perso e l’evento è si dice “Craps”;
  • se si ottiene invece un 4, 5, 6, 8, 9 o 10 (al primo lancio) il tiratore accumula il punteggio ed ha diritto ad un ulteriore tiro che gli darà la vittoria se viene riconfermato nuovamente quel punteggio, in caso contrario (se ottiene un 7) perderà la partita.
http://www.casino2k.com/gioco-dadi
E se viene un 11 al secondo tentativo?

Oppure un 12 o un 3 ?
__________________
www.Astrionline.it
Astromauh <a href=http://www.trekportal.it/coelestis/images/icons/icon10.gif target=_blank>http://www.trekportal.it/coelestis/i...ons/icon10.gif</a>
astromauh ora è in linea   Rispondi citando
Vecchio 13-11-11, 15:07   #130
aspesi
Utente Super
 
L'avatar di aspesi
 
Data di registrazione: Nov 2009
Ubicazione: Terra dei Walser
Messaggi: 4,380
Predefinito Re: Estrazioni casuali

Quote:
astromauh Visualizza il messaggio
E se viene un 11 al secondo tentativo?

Oppure un 12 o un 3 ?
Se viene 11 al secondo tentativo, non conta nulla e lo stesso se esce 12 o 3; e il lanciatore tira ancora i due dadi, finché esce o il 7 (perde chi lancia e vince chi scommette contro), o la somma che era uscita al primo lancio 4-5-6-8-9-10 (e allora per le vincite è viceversa quello che ho scritto prima)
aspesi non in linea   Rispondi citando
Rispondi


Links Sponsorizzati
Geoptik

Strumenti della discussione
Modalità  di visualizzazione

Regole di scrittura
Tu non puoi inserire i messaggi
Tu non puoi rispondere ai messaggi
Tu non puoi inviare gli allegati
Tu non puoi modificare i tuoi messaggi

codice vB è Attivo
smilies è Attivo
[IMG] il codice è Attivo
Il codice HTML è Disattivato


Tutti gli orari sono GMT. Attualmente sono le 15:38.


Powered by vBulletin versione 3.6.7
Copyright ©: 2000 - 2018, Jelsoft Enterprises Ltd.
Traduzione italiana a cura di: vBulletinItalia.it